Exploring Projectiles

In this activity we will explore the paths more than one projectile and an inclined plane.

We know for a projectile the horizontal equation of motion is $x=u t \cos (A)$

The vertical equation is $y=u t \sin (A)-0.5 g t^{2}$
Where u is the initial velocity, A the angle of projection, g acceleration due to gravity and t the time taken.

So, we have two parametric equations with parameter t
First, we enter the equations: (note that T is the parameter so use the X, T, θ, N key or the on-screen T).

Press Apps, find Parametric, press Reset then OK, then Start
For $\mathrm{X1}(\mathrm{~T})$ type ALPHA $\mathrm{U} \times \mathrm{T} \times \operatorname{COS}(\mathrm{ALPHA} A)$ then OK
For $\mathrm{Y} 1(\mathrm{~T})$ type ALPHA $\mathrm{U} \times \mathrm{T} \times \operatorname{SIN}($ ALPHA A) $-0.5 \times$ ALPHA $G \times$ T^{2} (use the x^{2} key) then OK

Set initial values for the variables:
Press HOME, type 9.8 press STO ALPHA G ENTER
Now choose some sensible values for the other variables, (say):
30 STO ALPHA A ENTER

5 STO ALPHA U ENTER

Press Shift Home Settings and set the Angle Measure to degrees.

Now press Plot to see the projectile.

Now enter $\mathrm{X} 2(\mathrm{~T})=\mathrm{V}^{*} \mathrm{~T}^{*} \operatorname{COS}(\mathrm{~B})$ and $\mathrm{Y} 2(\mathrm{~T})=\mathrm{J}+\mathrm{V}^{*} \mathrm{~T}^{*} \operatorname{SIN}(\mathrm{~B})-.5 * \mathrm{G}^{*} \mathrm{~T}^{2}$
(You can use Copy, Paste and Edit, or you can just type directly).

Mathematical Exploration with HP Prime

On the home screen set initial values as before．
I would recommend starting with the same values for the second projectile as you have for the first，and setting J＝1 which is the initial height of the second projectile．

$9.8 \cdot \mathrm{G}$	9.8
30•A	30
$10 \times$ U	10
$30 \cdot B$	30
$10 * V$	10
1｣	1

Sto •

T： $0(0,0)$
Menu

Experiment to find the value of B which makes the collision exactly on the ground．

You can also add an inclined plane to your model.
Press Symb and enter $\mathrm{X} 3(\mathrm{~T})=\mathrm{T}$ and $\mathrm{Y} 3(\mathrm{~T})=\mathrm{K} * \mathrm{~T}$
In the home screen set a gradient for the plane e.g. $\mathrm{K}=0.2$ using

0.2 STO ALPHA K ENTER

You can now explore the interrelationships between the variables:

Remember:

U and V are the initial speed and A and B the angle of projection of the two projectiles.
H and J are the initial height above the ground for the two projectiles.
G is acceleration due to gravity for both projectiles.
K is the gradient of the inclined plane.

One final parameter you can explore in your model is time. This is the parameter T which links the two parametric equations, so it is an independent variable.

You will have noticed that the inclined plane does not extend to the end of the screen. This is because the domain for T is pre-set, so the calculator does not have to calculate too many values of X and Y. Pressing Shift and Plot gives access to this setting.

The range of T (Rng) is initial set form 0 to 12 . We can see what happens if we go back in time by changing the initial setting to -12. (Use the $+/-$ key not the subtract key)

Be careful not to set the range too large or the graph will take some time to draw.

Now press Plot to see the outcome.

You now have a model with two projectiles with variable initial height and a variable inclined plane able to move in positive and negative time.

Parametric Plot Setup	
T Rng: -12.000	12.000
T Step: .0500	
X Rng: -15.900	15.900
Y Rng: -10.900	10.900
X Tick: 1.000	
Y Tick: 1.000	

Enter maximum time value

Create your own problems varying these parameters looking at the time and position of collisions between the projectiles themselves and the projectiles and the ground with varying conditions.

